

Active Learning in a Virtual Environment

Renata Ramos, Ph.D.

Associate Dean of Academic Affairs, Engineering Associate Teaching Professor, Bioengineering

Rice University

- 1. Rice Engineering Education
- 2. Fall 2020 Challenges
 - a. Student engagement
 - b. Active learning
 - c. Virtual laboratory classes
- 3. Tools & Tips (embedded)

Rice University

Leading research university with a strong commitment to education

~4,000 undergraduate students ~3,200 graduate students

Residential College System

- Approximately 400 students per class
- 37% of Rice UGs are in engineering

1,456 total 475 female 981 male

Diverse 12% Foreign National

88%US. Citizens Permanent Residents

- Approximately 400 student per class
- 9 departments (6 ABET accredited programs)

- Approximately 400 student per class
- 9 departments
- 18 credit max (~6 courses) per semester
- General Education + Science Foundation + Engineering Core + Technical Specialization

3rd and 4th Years

Specialized Courses Elective Courses

Rice Engineering

18 credit max (~6 courses) per semester

Hands-on, project-based curriculum

Engineering Education

- ~550 courses per semester
- Curricular offerings include:
 - UG teaching labs
 - Independent research opportunities
- Engineering design and data science projects
- Project-based student clubs

Fall 2020 Challenges

... in a *virtual* environment

Teaching ≠ Learning

t =time in lecture when information was presented

Student Engagement

We know how to teach face to face...

Student Engagement

...but what does this look like online?

Student Engagement

Community of Inquiry Framework

- **Social**: communication and group cohesion
 - Interactions with peers
 - Interactions with faculty
- Teaching: design and facilitation of learning
 - Communication and expectations plan
 - Material presentation/organization → modular
 - Delivery format
 - Feedback
- Cognitive: engaging with material
 - Critical thinking
 - Apply knowledge

What can we do as instructors to engage our students?

Build a solid foundation of social and teaching presence to stimulate cognitive presence

- Create community
- Be clear, flexible and present
- Prepare: know available technology and tools
- Rethink your course in terms of design and delivery

Technology Tools (Delivery)

Fall 2020 Challenges

... in a *virtual* environment

Active Learning

Instructional activities that

engage students in their own learning process

provide students with "opportunities to meaningfully talk, listen, write, read and reflect on the content, ideas, issue, and concerns of an academic subject"

Why How to do active learning?

Think-pair-share		Inquiry-based learning		ł
Class	In-class	Labs	Pro	blem-based
questions	problems	Studio	lea	rning
Minute	Flipped		Project-based	
papers	classroom		learning	
Low	Depth o	f Active Lea	arning	High

Technology Tools (Active)

Fall 2020 Challenges

... in a *virtual* environment

Laboratory Courses

Objectives of Labs

- 1. Selection of instrumentation
- 2. Comparison of theory and practice
- 3. Experimental design and implementation
- 4. Data analysis
- 5. Design and assemble a part or system
- 6. Learn from failure
- 7. Creativity
- 8. Psychomotor skills
- 9. Practice hazard identification and mitigation
- 10. Communication
- 11. Teamwork
- 12. Practice scientific ethics
- 13. Develop sensory awareness

Laboratory Courses

Virtual Labs Can Still Accomplish...

- 1. Selection of instrumentation
- 2. Comparison of theory and practice
- 3. Experimental design and implementation
- 4. Data analysis
- 5. Design and assemble a part or system
- 6. Learn from failure
- 7. Creativity
- 8. Psychomotor skills
- 9. Practice hazard identification and mitigation
- 10. Communication
- 11. Teamwork
- 12. Practice scientific ethics
- 13. Develop sensory awareness

Freshman Sophomore Junior Senior

Systems Physiology Electronic Circuits

Freshman Sophomore Junior Senior

Bioinstrumentation

Tissue Culture

Sophomore Junior Freshman Senior Mechanical Testing Bioprocessing Digital Design **Medical Device** troubleshooting

Sophomore Junior Freshman Senior Mechanical Testing Bioprocessing Digital Design **Medical Device** troubleshooting

How do we teach virtual labs?

- Rethink your course by identifying and preserving <u>critical</u> learning objectives – what do my students need to learn?
- Reconfigure your lab to match objectives:
 - Provide data for analysis
 - Equipment selection/experimental design
 - Teamwork via zoom (current industry)
 - Communication video, reports
 - Emphasize concepts (teachable moments or misconceptions) /critical thinking/theoretical design

Virtual Laboratories

Nootis, Prince, Vigeant, Golightly. ASEE 2015, 2018, 2019.

- Create/facilitate demonstrations & simulations
 - Heat transfer misconceptions (melting ice)
 - Mechanical testing pre-recorded experiment
- Use available media or supplies
 - Medical troubleshooting lab \rightarrow break apart lab with common household items
 - Existing online videos (common for physics and chemistry principles)
 <u>Pressure in fluids</u>
- Learning by teaching (peer-teaching)
- Consider virtual labs and simulations

- Brainstorming/Collaboration
 - Padlet
 - Mural, Miro, IdeaBoardz
- Virtual Labs/Demos
 - <u>LabXchange</u> biological science simulations
 - <u>Journal of Visualized Experiments</u> experiments demonstration, mapped to key concepts and student protocols.
 - MERLOT repository housing virtual labs.
 - <u>ChemCollective</u> chemistry lab simulations
 - <u>Phet</u> interactive simulations that allow students to vary parameters
 - <u>ThinkerCAD</u> virtual circuit design program
 - <u>PhysioNet</u> physiological data from different experimental setups (ECG, gait and balance, EEG, images, etc.) which can be provided for data analysis
 - <u>Labview</u> tutorials and online labs, demos of data acquisition protocols
 - Protolabs Design for manufacturing resources

Thanks for your time!

- Social Presence:
 - Be clear, flexible and present
 - Provide collaboration opportunities
- Teaching Presence
 - Course design rethink your course
- Cognitive Presence
 - Real-world applications

